If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+30t-14=0
a = -4.9; b = 30; c = -14;
Δ = b2-4ac
Δ = 302-4·(-4.9)·(-14)
Δ = 625.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-\sqrt{625.6}}{2*-4.9}=\frac{-30-\sqrt{625.6}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+\sqrt{625.6}}{2*-4.9}=\frac{-30+\sqrt{625.6}}{-9.8} $
| -6=1+n/4 | | 44=3u-10 | | 30-6x=14+10x | | 2x+7=3x;6 | | -13+4v=3 | | -6(9-x)=2(3x-7) | | T=8x+4x | | 5(3x-1)+3(14-2x)-4(2x+3)=-9 | | 7+7x-2=75 | | 4x+12=3(x+5)-3 | | 2/3x-7=1/3x+12 | | -7y+35=-5(y-5) | | -20(10-15z)=-3(-10z-9) | | 5=2n+-1+-4 | | 3x-7-1/x=0 | | u/30=24 | | -80=7(4r-8)+4(-5r-4) | | -3d-10=d | | w/2-14=4 | | -d7=-13 | | 4x+2(x-5)=5x-5 | | x+2x+1=62 | | 30.40/80=c | | (1.8*10^-10)=x(0.2+x) | | 5x-4=121 | | 1+3b=2b-8 | | -7+35=-5(y-5) | | 4x+12-2x=16 | | 33=1.1x | | Y-7+4x=13 | | 2-(3x-4)=4x+3 | | u/20=23 |